Rothamsted Research where knowledge grows

WGIN 3

Resistance to multiple foliar fungal pathogens and take-all root disease in wheat

Vanessa McMillan

Department for Environment Food & Rural Affairs

WGIN Stakeholder Meeting 30th November 2016

Major foliar wheat pathogens in UK

Wheat yellow rust *Puccinia striiformis* f.sp. *tritici*

Wheat brown rust *Puccinia triticina*

Septoria leaf blotch *Zymoseptoria tritici*

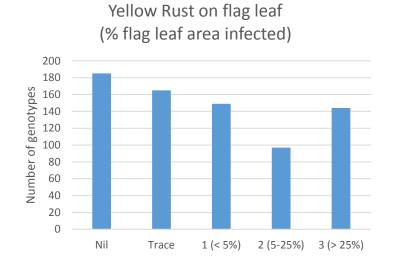
Powdery mildew Blumeria graminis f.sp. tritici

Exploiting the Watkins landrace collection

 2008 - Watkins landrace collection (n = 740 genotypes) phenotyped for resistance against foliar fungal pathogens and take-all root disease

 High foliar disease pressure – brown rust, yellow rust, septoria and powdery mildew assessments carried out

ROTHAMSTED


Exploiting the Watkins landrace collection

Number of genotypes

0

Nil

 500

 450

 400

 350

 300

 250

 200

 150

 100

 50

Septoria assessment

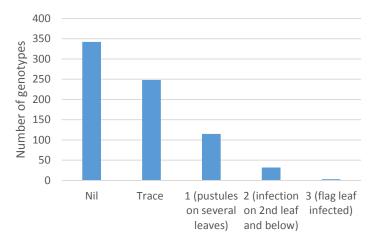
on lower

leaves only)

1 (infection 2 (slight flag 3 (severe flag

leaf

infection)


leaf

infection)

Trace

Brown Rust assessment

Exploiting the Watkins landrace collection

10 Watkins genotypes with a high degree of resistance to all 4 foliar pathegenarci

Also a high take-all disease year with root infection early in the season

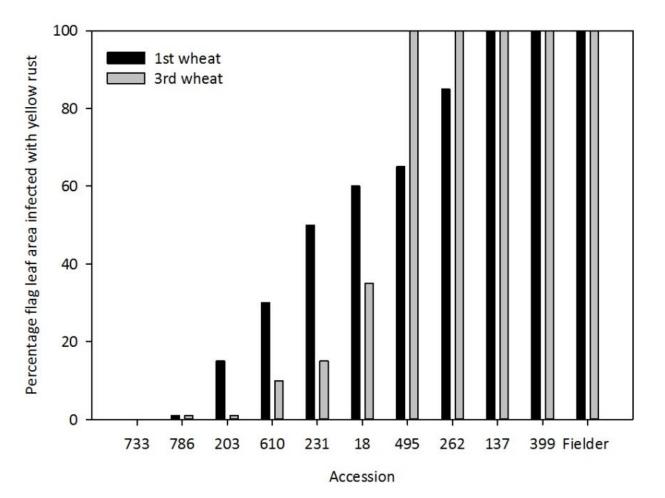
Was the foliar disease resistance an induced plant response?

			2008 Disease assessments			
Accesssion	Growth habit	Country of Origin	Yellow rust	Brown rust	Septoria	Mildew
18	Spring	India	0	0	Т	Т
137	Spring	Australia	Т	Т	0	Т
203	Winter	India	0	0	0	Т
231	Spring	Hungary	0	0	Т	0
262	Spring	Canary Islands	0	0	0	0
399	Spring	China	Т	0	Т	0
495	Spring	Morocco	0	0	Т	0
610	Spring	Yugoslavia	0	0	Т	Т
733	Spring	Iran	Т	Т	Т	Т
786	Spring	USSR	0	Т	Т	0

0 - no disease, T = trace

- 10 Watkins genotypes sown in both 1st wheat (no take-all) and 3rd wheat (high take-all) field trials in autumn 2014, 2015 and 2016
- No fungicides applied to allow natural disease to develop
- Score for foliar diseases + take-all

Watkins foliar disease field trial 2015



26th June 20151st wheatLong Hoos 4Yellow rust dominant disease that developed across 2015 field trials

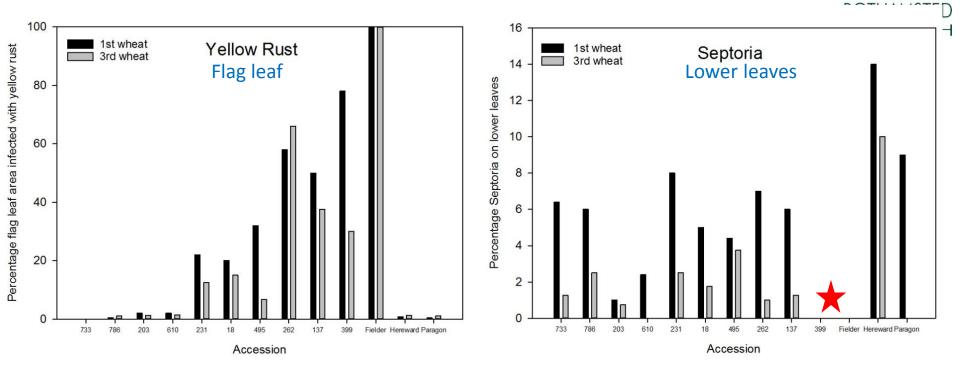
Evidence of resistance to yellow rust

- Evidence of induced response due to take-all?
- Did varieties escape YR in 2008 or different YR races?

Evidence of resistance to yellow rust

Watkins 203 Low levels of yellow rust sporulation

Watkins 733 No sporulation


Watkins foliar disease trial 2016

- Repeat field trial with 5 replicates of each genotype sown in autumn 2015 in Long Hoos 5 (1st wheat) and Long Hoos 6/7 (3rd wheat)
- Yellow rust, septoria and brown rust developed

6th June 2016 – Yellow rust and Septoria



• Yellow Rust shows similar pattern to 2015

- Low levels of Septoria on all genotypes except 399 and Fielder where high levels of yellow rust are found, therefore impossible to assess Septoria infections
- All genotypes at GS 57-61, except 610 at GS 47

22nd June 2016 – Brown rust developed across the 1st wheat trial site

Watkins 733

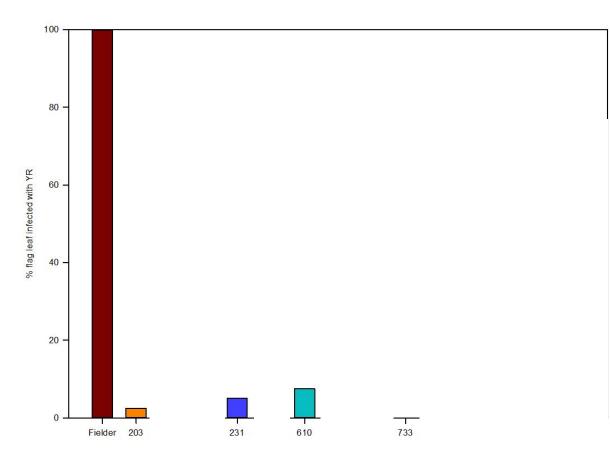
Watkins 786

- Watkins 733 and 786 were most resistant to yellow rust but are very susceptible to brown rust do not possess multi disease resistance
- Watkins 203 most promising for showing high levels of resistance against both yellow rust, brown rust and septoria

Watkins mapping population development

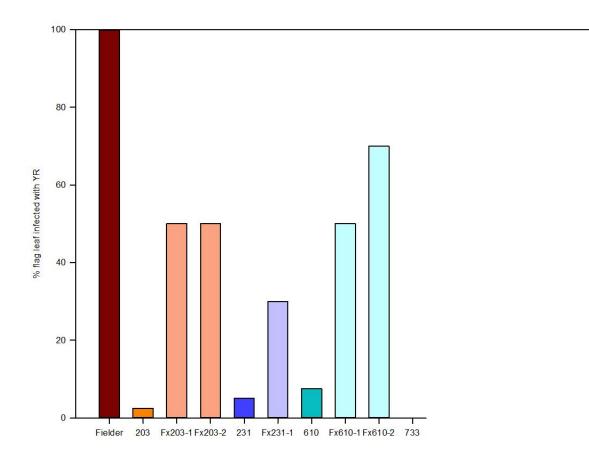
Summer 2015 Field crossing with cv. Fielder							
Accession Number	Growth habit	Country of Origin	Ears crossed	F ₁ grains			
203	Winter	India	8	31			
231	Spring	Hungary	8	54			
610	Spring	Yugoslavia	6	33			
733	Spring	Iran	6	49			
786	Spring	USSR	N/A	N/A			

Summer 2016


- F_1 grain sown in glasshouse to generate F_2 and for backcrossing to cv. Fielder
- Watkins 786 x Fielder crossing carried out in glasshouse
- F₁ grain included in a spring field trial 2016 to study inheritance

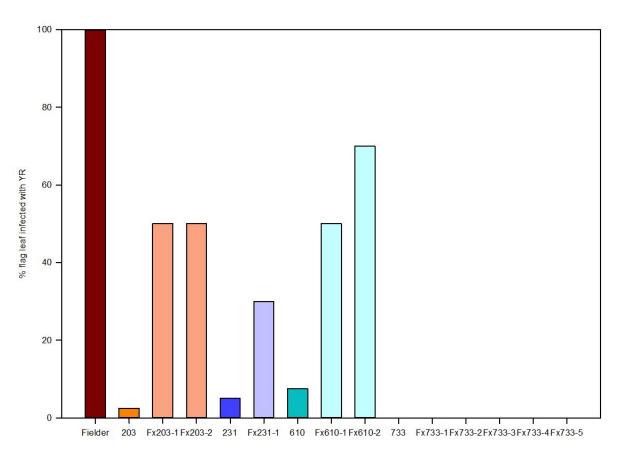
F₁ plants – spring field trial

- Six F₁ grain from each of the 4 crosses sown
- Two replicate plots of parent genotypes (40 seeds per plot)
- Yellow Rust assessments on 30th June 2016



F₁ plants – spring field trial

- Six F₁ grain from each of the 4 crosses sown
- Two replicate plots of parent genotypes (40 seeds per plot)
- Yellow Rust assessments on 30th June 2016



F₁ plants – spring field trial

- Six F₁ grain from each of the 4 crosses sown
- Two replicate plots of parent genotypes (40 seeds per plot)
- Yellow Rust assessments on 30th June 2016

- Five Watkins genotypes with evidence of moderate-high resistance against YR
- Watkins 203 most promising genotype for multi-disease resistance
- Trend towards less foliar disease in 3rd wheat (high take-all) field trial across both seasons – to be tested in controlled environment conditions

On-going work

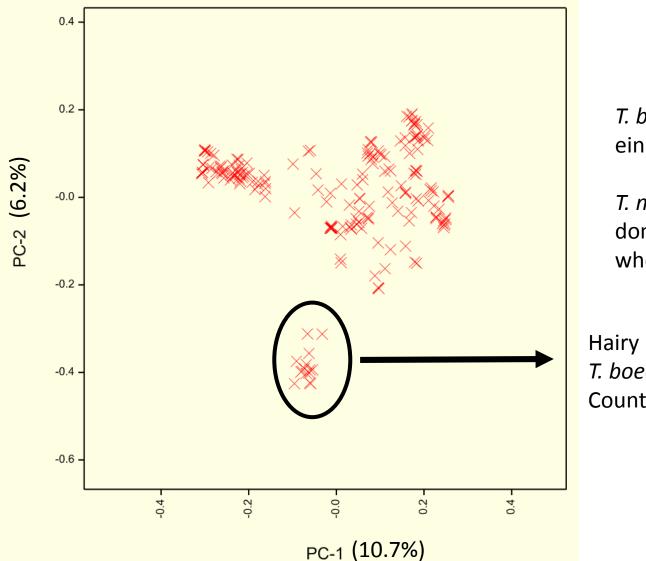
- Repeat 1st and 3rd wheat multi-disease resistance trials drilled autumn 2016
- *Zymoseptoria* field trial drilled autumn 2016
- F₂ inheritance trial drilled autumn 2016
- Check for known Yr and multi-disease resistance genes
- Seedling race tests

Exploiting *Triticum monococcum* as a novel source of genetic diversity for improvement of hexaploid wheat

T. monococcum wheat ear

- The diploid wheat, *T. monococcum* (A^m A^m) was widely cultivated during early cereal farming on poorer soils
- After the Bronze Age *T. monococcum* cultivation diminished
- A^m genome not directly involved in the generation of
 - modern durum wheat (tetraploid) common bread wheat (hexaploid)

RRes Triticum monococcum collection


Total number	323 (Vavilov, USDA, IPK)		
Country of origin	35		
Spring habit	229		
Winter habit	86		

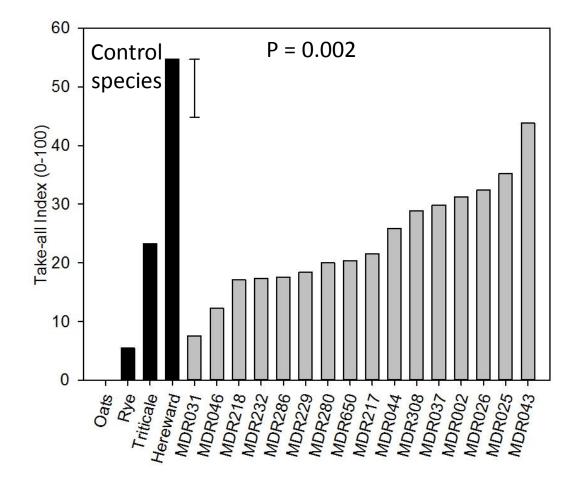
WGIN phenotyping

- Yellow rust
- Take-all root disease
- Eyespot
- Septoria (Kostya Kanyuka)
- Aphid resistance (Lesley Smart and Gia Aradottir)
- Root penetration (Yaoxiang Ge and Richard Whalley)
- Recently genotyped 203 viable genotypes using 35K array at Bristol University

Triticum monococcum collection Principal Coordinates Analysis

T. boeoticum = wild einkorn wheat

T. monococcum = domesticated einkorn wheat


Hairy leaves, possibly *T. boeoticum* Country of origin = Turkey

203 Tm genotypes, 1026 markers

Take-all root disease - highly resistant genotypes identified within *T. monococcum*

- 3rd wheat field trials 2006-2011 (WGIN 1 and 2)
- 34 T. monococcum genotypes (AA diploid genome) tested over 5 years

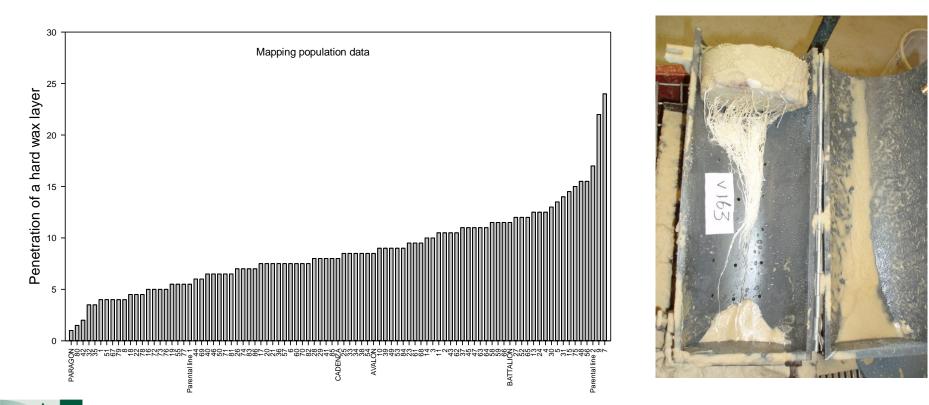
F₂ *Tm* cross progeny numbers:

Parentage		Estimated F ₃ progeny number
MDR031 (R) x MDR043 (vS)	31 ears from 3 plants	450
MDR031 x MDR229	16 ears from 1 plant	320
MDR031 x MDR650	48 ears from 3 plants	900
MDR043 (vS) x MDR031 (R)	48 ears from 3 plants	960
MDR043 (vS) x MDR046 (R)	36 ears from 3 plants	750
MDR229 x MDR031	94 ears from 6 plants	2000

Populations advanced by SSD in 2015/16 from F_4 to F_6 for future field phenotyping

Triticum monococcum take-all root resistance MDR031(R) x MDR043 (S) mapping population

- 516 F_2 seeds \longrightarrow 380 F_6 lines
- 0.5 33.5 g of each line available
- **129** lines > 18 g seed selected for field trial + parents + Hereward control plots
- Plot size 4 rows x 0.6 m length, 80 seeds per plot
- Randomised block design (3-5 reps/genotype)
- 3rd wheat field trial drilled in Claycroft 6th Oct 2016

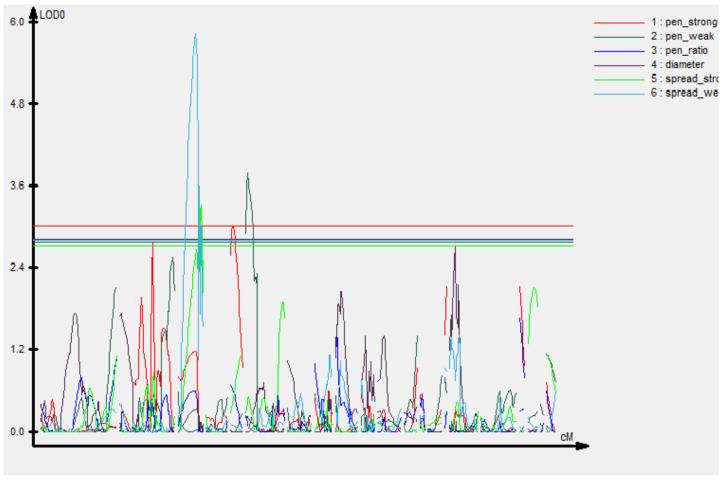


Penetration of strong layers by roots

ROTHAMSTED

MDR037 (poor root penetration) x MDR229 (strong root penetration) mapping population

Comprehensive data set to search for QTLs including root number, root angle, root diameter and root penetration



Yaoxiang Ge and Richard Whalley

Penetration of strong layers by roots

MDR037 (poor root penetration) x MDR229 (strong root penetration) mapping population

ROTHAMSTED

Summary

- Novel resistance traits identified within T. monococcum
- Preliminary evidence of different groupings based on genotyping of *T. monococcum* collection
- MDR031 (R) x MDR043 (S) F₆ take-all phenotyping trial drilled autumn 2016
- MDR037 (poor penetration) x MDR229 (strong penetration) root strength preliminary analyses reveal multiple QTLs
- Strategies for introgression into hexaploid wheat being tested

Many thanks to

Gail Canning Richard Gutteridge Kim Hammond-Kosack

Undergraduate summer students Erin Baggs Eleanor Leane Tessa Reid Laurie Neal Alex Chambers-Ostler Leanne Freeman

<u>PhD students</u> Joseph Moughan Sarah-Jane Osborne

Mike-Hammond-Kosack - crossing

Rodger White - statistics

RRes farm and glasshouse staff

Soil Physics Group Yaoxiang Ge Colin Webster Rhys Ashton Richard Whalley

T. monococcum source genotypes

MDR 308 (DV92) - TmStb1 locus mediated resistance to Zymoseptoria tritici

MDR 031 - Seedling and adult plant root resistance to the take-all fungus (*Gaeummannomyces graminis var. tritici*)

MDR 049 - Seedling and adult plant resistance to two aphid species o Bird cherry-oat aphid *Rhopalosiphum padi* o Grain aphid *Sitobion avenae*

Current strategy (so far not very successful)

cross *T. monococcum* (*Tm*) to *T. aestivum* cv. Paragon ph-1 embryo rescue in F_1 backcross the hybrid to *T. aestivum* cv. Paragon

Trying two alternative strategies

Strategy #1

colchicin treat *Tm* to produce autotetraploid cross *Tm* autotetraploid directly to wild-type hexaploid and durum wheat

Strategy #2

use tetraploid durum wheat as a bridging species cross *Tm* with durum wheat backcross this hybrid to hexaploid wheat

